Bayesian analysis of spectral mixture data using Markov Chain Monte Carlo Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Spectral Mixture Data using Markov Chain Monte Carlo Methods

This paper presents an original method for the analysis of multicomponent spectral data sets. The proposed algorithm is based on Bayesian estimation theory and Markov Chain Monte Carlo (MCMC) methods. Resolving spectral mixture analysis aims at recovering the unknown component spectra and at assessing the concentrations of the underlying species in the mixtures. In addition to non-negativity co...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Seriation in Paleontological Data Using Markov Chain Monte Carlo Methods

Given a collection of fossil sites with data about the taxa that occur in each site, the task in biochronology is to find good estimates for the ages or ordering of sites. We describe a full probabilistic model for fossil data. The parameters of the model are natural: the ordering of the sites, the origination and extinction times for each taxon, and the probabilities of different types of erro...

متن کامل

Adaptive Incremental Mixture Markov chain Monte Carlo

We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. Typically, adaptive MCMC methods recursively update a parametric proposal kernel with a global rule; by contrast AIMM locally adapts a non-parametric kernel. AIMM is based on an independent Metropolis-Hastings proposal d...

متن کامل

Bayesian phylogenetic inference via Markov chain Monte Carlo methods.

We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix form suggests a simple and effective proposal distribution for selecting candidate trees cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemometrics and Intelligent Laboratory Systems

سال: 2006

ISSN: 0169-7439

DOI: 10.1016/j.chemolab.2005.11.004